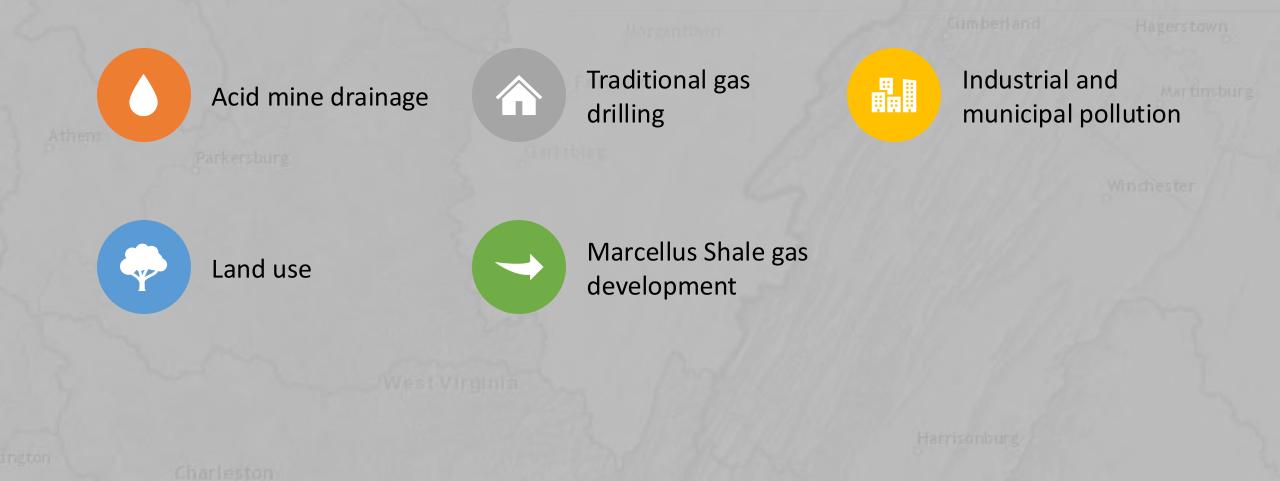
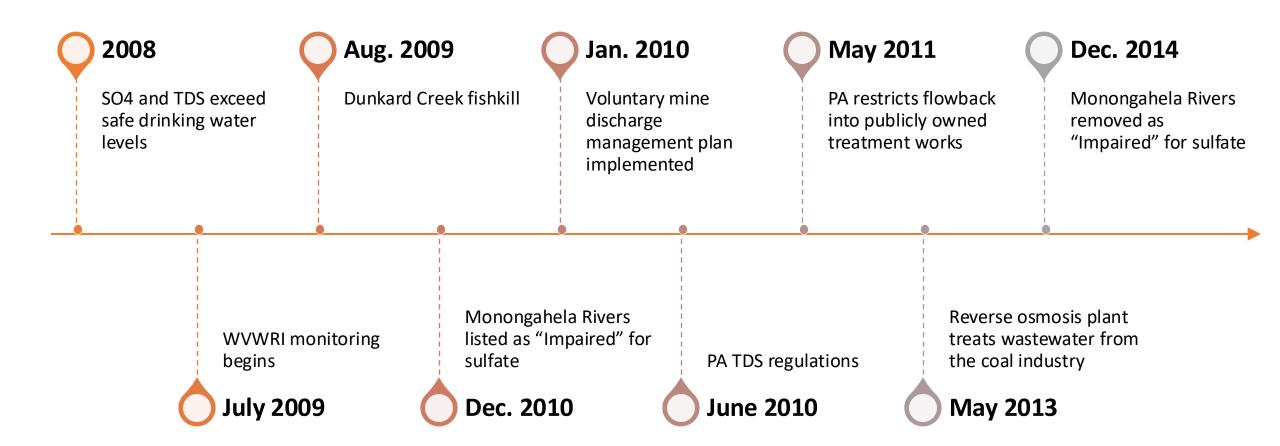


Long-term water quality trends in the Monongahela River basin

Leslie Hopkinson¹, Sitraka Rabemanjakasoa¹, Sarah Nelson^{1,2}, Rachel Spirnak², Melissa O'Neal²

¹Wadsworth Department of Civil and Environmental Engineering, WVU ²West Virginia Water Research Institute


December 6, 2024



The Monongahela River basin is highly industrialized and includes West Virginia and Pennsylvania coal fields.

Pennsylvania

Water quality concerns in the Monongahela River basin include:

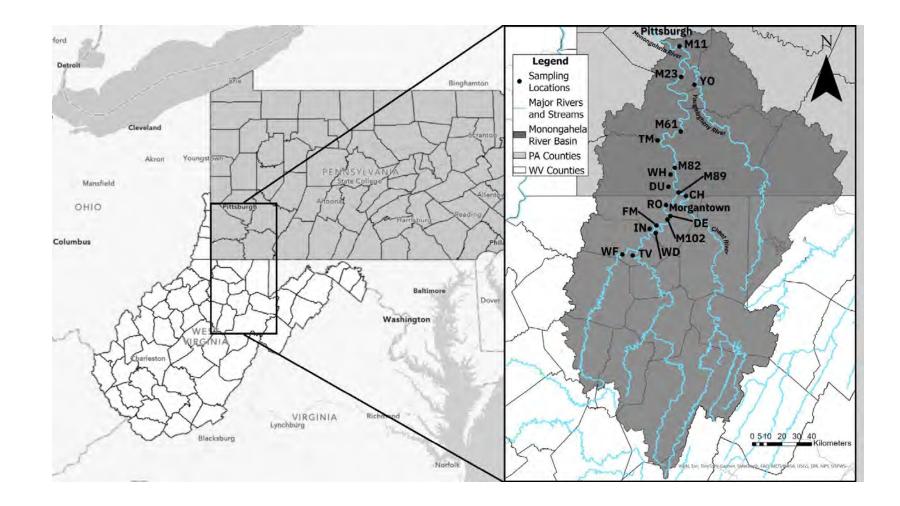
WHAT IS 3RQ?

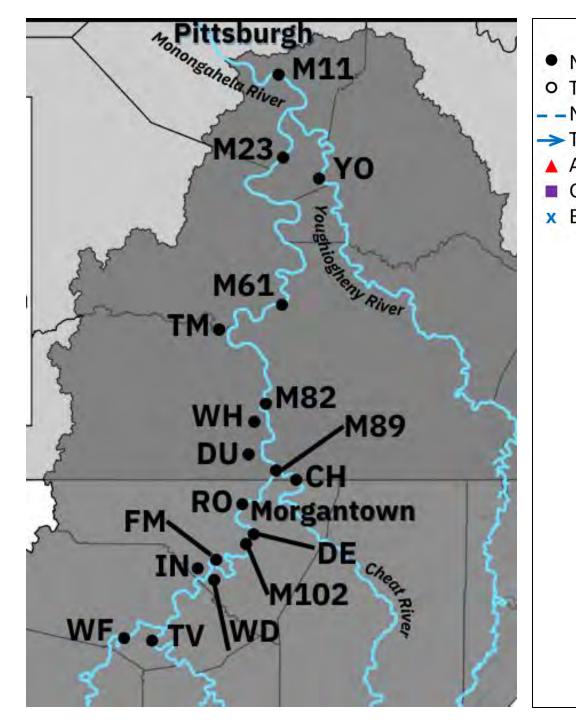
Water: One of our most precious and vital resources, it is essential for life and economic prosperity. Yet so many of the activities that keep our economy alive and growing also threaten our water resources.

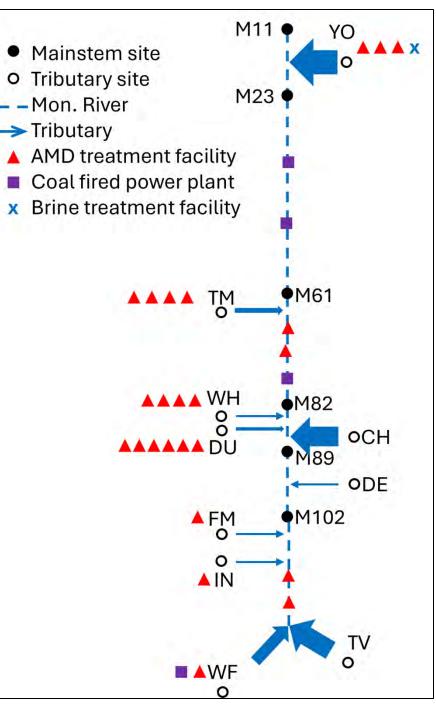
At the West Virginia Water Research Institute, we understand how essential clean water is to our way of life. We work to establish programs and new initiatives that help to develop new technologies and inform policy to keep our water protected. It is this dedication to clean water that was the catalyst for the long-term, comprehensive water quality monitoring and reporting program we call Three Rivers QUEST (3RQ).

The 3RQ project monitors rivers, tributaries and headwater streams that drain an area of over 25,000 square miles in five states. It brings together academic researchers, citizen scientists, and conservation groups to collect, analyze, and monitor important water quality data. This data is displayed on the 3RQ website and can be seen here. This data is displayed to provide the public, other researchers, federal and state agencies, and industry with timely and accurate information as it pertains to the overall health of our local rivers and streams.

https://3riversquest.wvu.edu/




The *overall objective* of this study was to evaluate long-term trends in water quality in the Monongahela River basin.


- The null hypothesis, H_0 , was that there was no monotonic trend in central tendency of the water quality variables monitored.
- Utilizing the publicly available 3RQ dataset, a trend analysis approach was used to determine if there were trends in water quality parameters of the Monongahela River and its major tributaries.

Methods: Monongahela River Basin

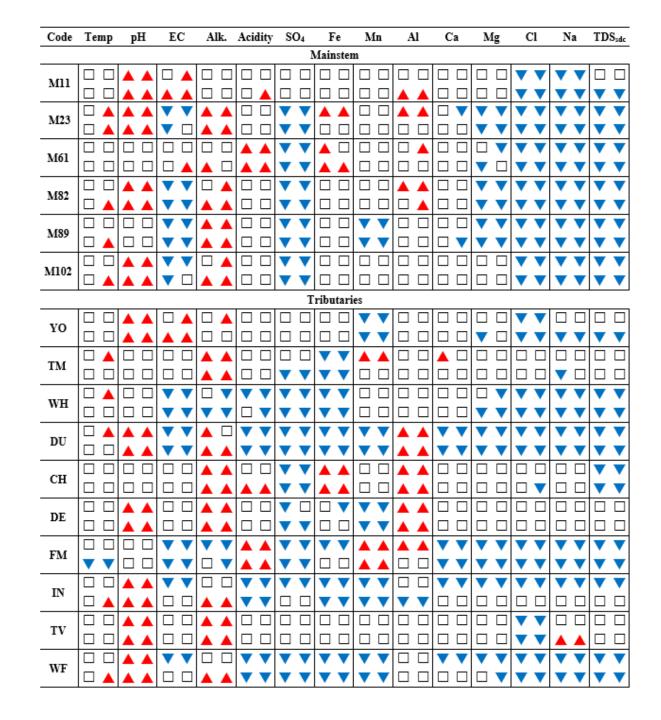
Methods: Monitoring locations

WVWRI collected water samples and *in situ* measurements at least monthly since July 2009.

- Water grab samples were analyzed for alkalinity, SO₄, Cl and dissolved Al, Ca, Fe, Mg, Mn, and Na
- Total dissolved solids (TDS) was calculated as the sum of the concentrations of all measured dissolved constituents
- Acidity was estimated
- Conductivity (EC), pH, and temperature were measured directly

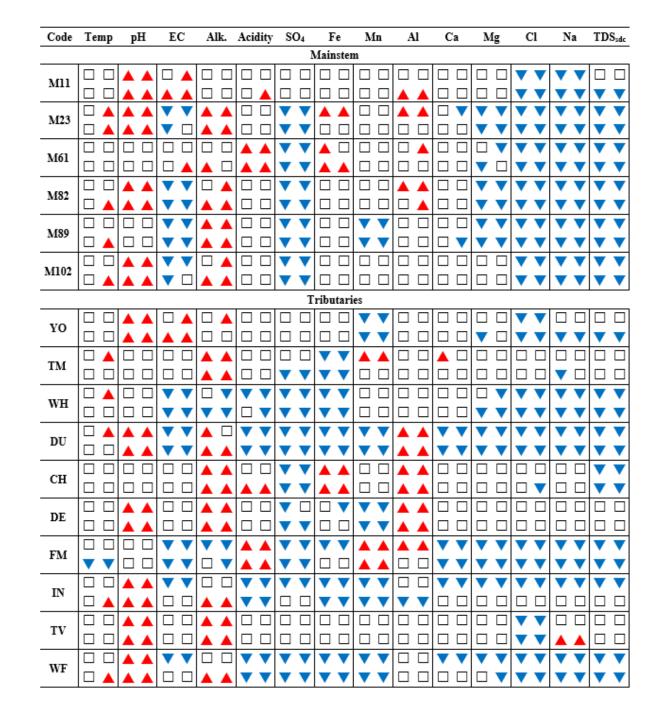
WVWRI collected water samples and *in situ* measurements at least monthly since July 2009.

- Mean daily discharge values (Q) were:
 - obtained from nearby USGS gage stations at the time of sample collection,
 - estimated with relationships reported by Kingsbury et al. (2023), or
 - estimated by the Watershed Modeling and Characterization System (Strager et al. 2010).


Code	Description	Location	Drainage area (km ²)	Sampling dates
		Mainstem		
M11	Monongahela River	Homestead, PA	19,010	May 2013-February 2023
10111	(river mile 11)	40°24'52" N; 9°53'53" W	19,010	May 2013-reoldary 2023
M23	Monongahela River	Elizabeth, PA	13,831	July 2009-February 2023
1412.5	(river mile 23)	40°16'23" N; 79°53'17" W	15,651	July 2009-1 Coluary 2025
M61	Monongahela River	Brownsville, PA	12,898	March 2012-February 2023
10101	(river mile 61)	40°1'18" N; 79°53'25.6" W	12,090	Water 2012-1 coluary 2023
M82	Monongahela River	Masontown, PA	11,707	July 2009-February 2023
10102	(river mile 82)	39°51'7" N; 79°55'34" W	11,707	July 2009-1 Coluary 2025
M89	Monongahela River	Point Marion, PA	7,030	July 2009-February 2023
11102	(river mile 89)	39°44'13" N; 79° 54' 14" W	7,000	5 dily 2009-1 cortiary 2025
M102	Monongahela River	Morgantown, WV	6,660	July 2009-February 2023
	(river mile 102)	39°36'40" N; 79°58'16" W	0,000	5 diy 2009-1 Cordary 2025
		Tributaries		
YO	Youghiogheny River	40° 14' 13" N; 79°48'25" W	4,429	July 2009-February 2023
TM	Ten Mile Creek	39°58'52" N; 80°2'2" W	865	July 2009-February 2023
WH	Whiteley Creek	39°49'16" N; 79°57'7" W	136	September 2009-February
		*		2023
DU	Dunkard Creek	39°45'54" N; 79°57'54" W	596	July 2009-February 2023
CH	Cheat River	39°43'16" N; 79°51'29" W	3,652	July 2009-February 2023
DE	Deckers Creek	39°37'41" N; 79°57'14" W	163	July 2009-February 2023
FM	Flaggy Meadows Run	39°35'2" N; 80°2' 17" W	4	May 2010-February 2023
IN	Indian Creek	39°34'8" N; 80°4'44" W	51	May 2010-February 2023
TV	Tygart Valley River	39°26'38" N; 80°10'52" W	3,550	July 2009-February 2023
WF	West Fork River	39°26'56" N; 80°14'38.4" W	2,140	July 2009-February 2023
		Tributaries with incomplete	datasets	
WD	White Day	20°22156" N. 20°2121" W	02	July 2010-December 2013,
WD	White Day	39°32'56" N; 80°2'31" W	83	October 2019-February 2023
RO	Robinson Run	39°40' 44" N; 79°58'44" W	20	May 2010-December 2013,
KO	KUUIISUII KUII	JJ 40 44 14, /J J044 W	20	October 2019-February 2023

Methods: Statistical analyses

- Four nonparametric statistical tests were performed to determine if there were significant monotonic trends over time ($\alpha = 0.1$):
 - 1. Mann-Kendall trend test
 - 2. Mann-Kendall trend test adjusted for discharge,
 - 3. Seasonal Kendall test
 - 4. Seasonal Kendall test adjusted for discharge
- Slopes of significant relationships were estimated by the Theil-Sen estimator
- All statistical analyses were performed using R version 4.3.2


Code	Te	mp	P	н	E	С	A	lk.	Aci	dity	S	O₄	F	e	Μ	[n	A	NI I	C	a	M	íg	0	21	N	a	TD	Sade
			_				_		_			1	lair	ister	n		_								_			
M11																							•••	•	•	•		
M23					• •						¥	¥									• •	•	•	•	•	•	•	•
M61											•	•											•	•	•	•	•	•
M82					•	•					¥	•									•	¥	¥	•	¥	•	•	•
M89					•	-					•				•	•					•		•		•			-
M102					•						-														•			
		_										Т	ribu	tari	es													-
YO															•	•							•	•				
ТМ													¥	•														
WH					•	•		•		•	•		•									•	¥	•	•	•	•	•
DU					•	•			¥	÷	•	•	¥	•	•	•			•	¥	•	•	¥	•	•	•	•	•
СН											¥	•															•	•
DE											¥				•	•												
FM		□ ▼			•	•		•			•	•							••	¥	•	•	•	¥	•	•	•	•
IN									•	÷			•	•	•	•	□ ▼	□ ▼										
TV																							•	¥				
WF									•	•	•	•	•	•	•	•						•	•	•	•	•	•	•

Significant increasing trend
Significant decreasing trend
No trend

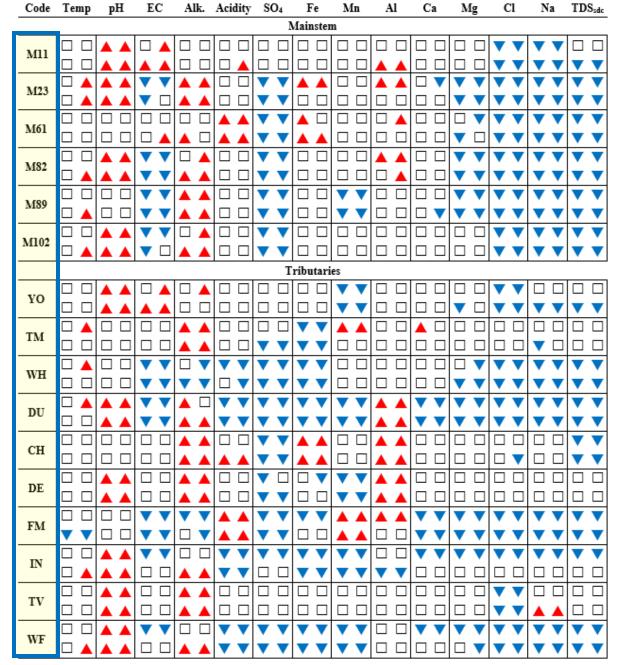
- Significant increasing trend
- Significant decreasing trend

MK	SMK
MK-adjusted	SMK-adjusted

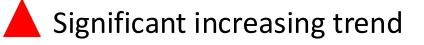
Parameters analyzed

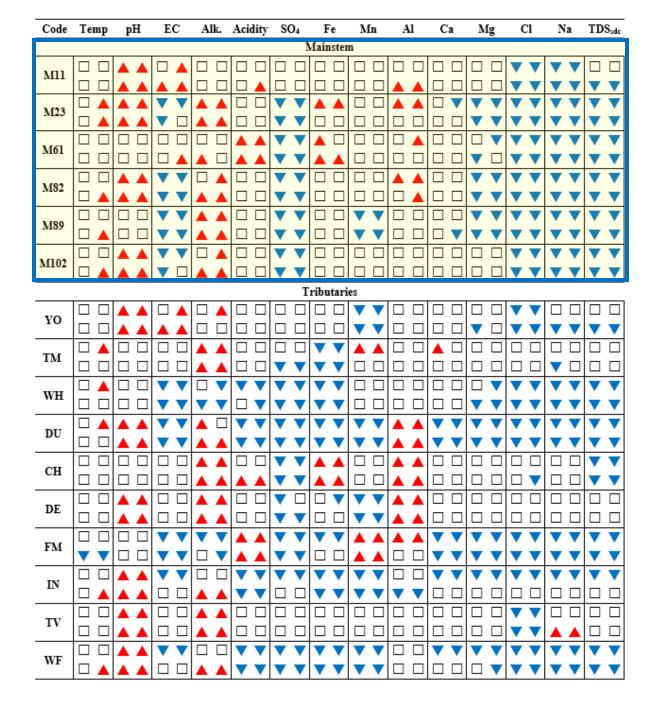
Results: Snapshot

Significant increasing trend


Significant decreasing trend

Code	Ten	ıp	p	H	EC		A	Alk. Acidity		S				Fe Mn		Al Ca		a	a Mg		Cl		Na		TDS			
												1	Main	ister	n													
М11																							•		•			
M23		<u> </u>	Ā		2	7					Ī	Ī								<u> </u>	Ī	Ī	Ť	Ż	Ť	Ż	Ť	Ż
			<u>-</u>			H		_			÷	÷										÷	÷	÷	÷	÷	÷	÷
M61											Ť	Ť									•		Ť	Ť	Ť	Ť	Ť	Ť
M82						•					•	•									•	•	¥	•	•	•	¥	
M89					▼	V					Ť	Ť			•	•					Ť	Ť	Ť	Ť	Ť	Ť	Ť	V
M107					<u>.</u>	-					<u>.</u>	-				<u> </u>						<u> </u>	<u>•</u>	-	<u>•</u>	-	<u>•</u>	-
M102					÷						÷	÷											÷	÷	÷	÷	÷	
		_1	_	_								Т	ribu	ıtari	es													
															▼	▼							▼	▼				
YO															▼	▼					▼		▼	▼	▼	▼	▼	
ТМ																												
					-	₹		Ŧ	┢	-	Ť	÷	Ť	Ť								-	▼	₹	Ť	₹	▼	
WH					▼	▼	▼	▼		▼	▼	▼	▼	▼							▼	▼	▼	▼	▼	▼	▼	
DU					¥	÷			÷	•	¥	÷	¥	•	¥	•			¥	•	¥	÷	¥	÷	Ť	÷	¥	
СН																												
DE											V			•														
DL								-							•	•						-						
FM					Ť	÷		÷			Ť	÷							Ť	•	Ť	÷	Ť	÷	Ť	÷	Ť	÷
IN																												
																								▼				
TV																							▼	▼				
WF									Ť	•	Ť	÷	Ť	•	Ť	•						¥	Ť	÷	Ť	÷	Ť	

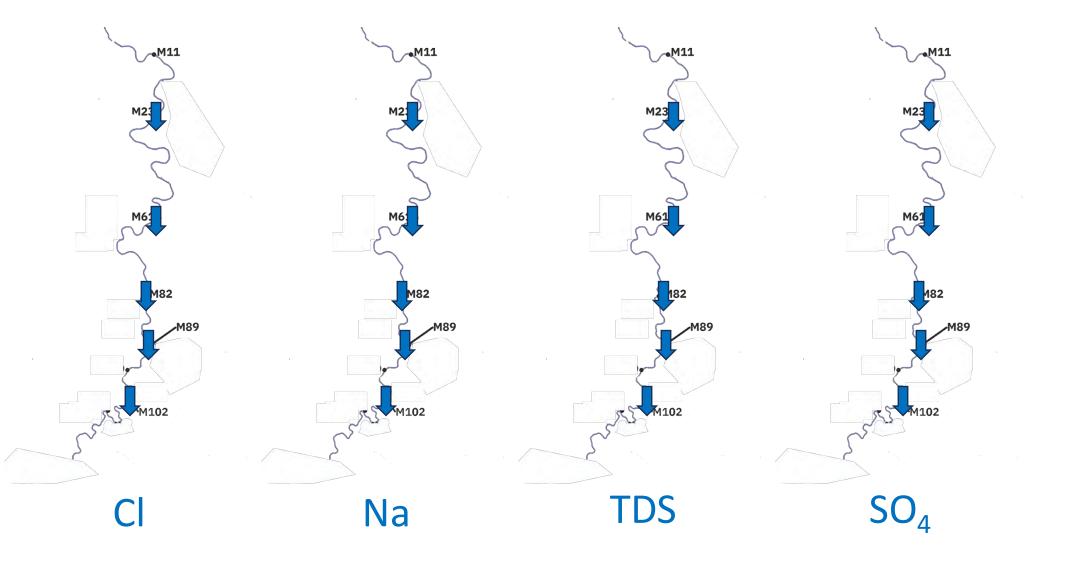

Monitoring Stations

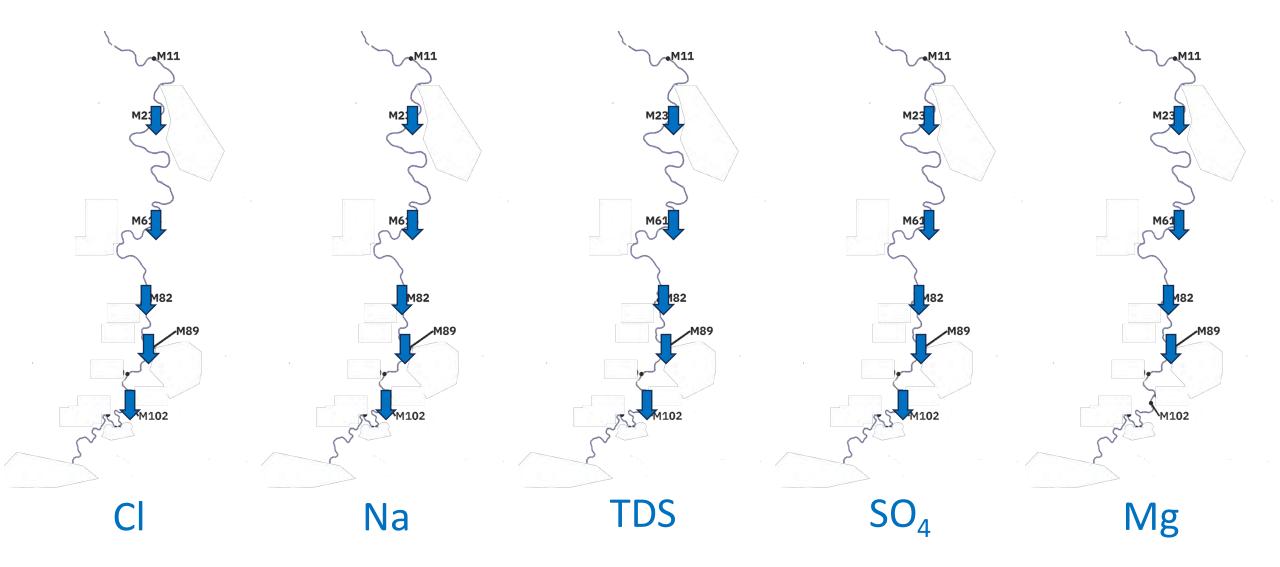

Significant decreasing trend

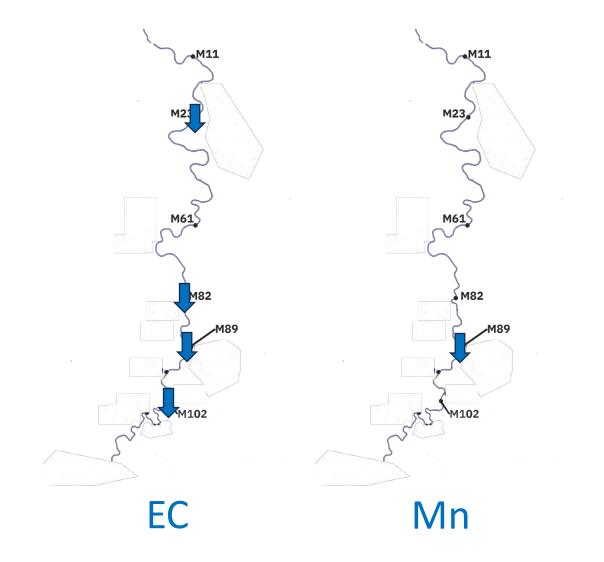
Mainstem

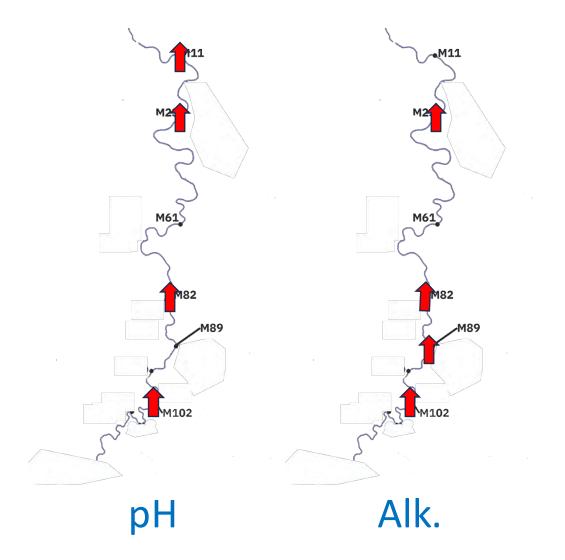
Significant decreasing trend

Significant increasing trend

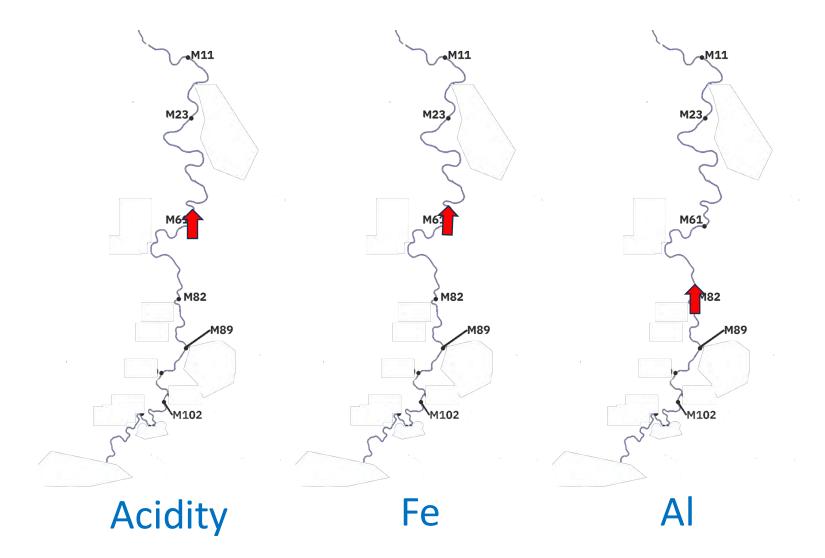

Significant decreasing trend

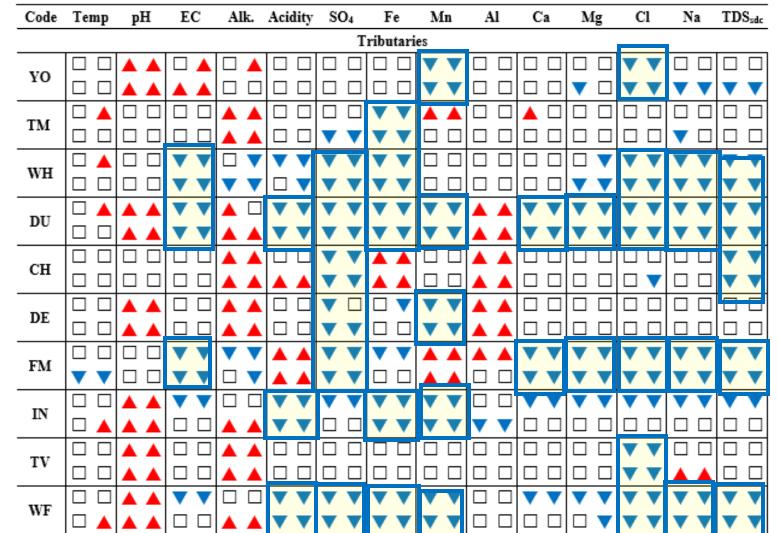

No trend


Major Tributaries

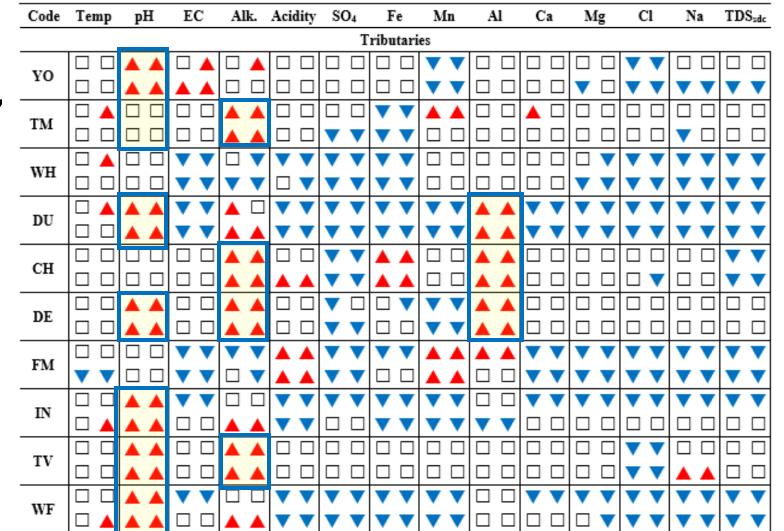

Code	Te	mp	pH EC		C Alk.		Acidity		S	O4		`e	Μ	ĺn	A	11	С	a	Μ	ſg	Cl		Na		TD	S_{sdc}		
												I	ſair	ster	n													
M11																							▼	▼	▼	▼		
																							▼	\mathbf{v}		\mathbf{v}	▼	▼
M23			۸		▼	▼					▼	▼						▲		▼	▼	▼	▼	▼	▼	▼	▼	▼
					\mathbf{v}						▼	▼									▼	V	▼	\mathbf{v}	▼	▼	▼	
M61										▲	▼	▼										▼	▼	▼	▼	▼	▼	▼
											▼	▼									▼		▼	\mathbf{v}	•	▼	▼	▼
M82			۸		▼	▼					▼	▼									▼	▼	▼	▼	▼	▼	▼	▼
N102					\mathbf{v}	\mathbf{v}					▼	\mathbf{V}									▼	\mathbf{v}	▼	\mathbf{v}	▼	\mathbf{V}	▼	\mathbf{v}
M89					▼	▼					▼	▼			▼	▼					▼	▼	▼	▼	▼	▼	▼	▼
N109					\bullet	\mathbf{v}					▼	▼			►	\mathbf{v}				\mathbf{v}	▼	\mathbf{v}	▼	\mathbf{v}	►	\mathbf{v}	▼	\mathbf{v}
M102					▼	▼					▼	▼											▼	▼	►	▼	▼	▼
N1102					▼						▼	\mathbf{V}											▼	▼	▼	▼	▼	▼
	Tributaries																											
YO															▼	▼							▼	▼				
ŶŬ															▼	▼					▼		▼	▼	▼	▼	▼	▼
73.6													▼	•														
ТМ											▼	▼	▼	▼											▼			
					▼	▼		▼	▼	▼	▼	▼	▼	•								▼	▼	▼	►	▼	▼	▼
WH					▼	▼	▼	▼		▼	▼	▼	▼	▼							▼	▼	▼	▼	▼	▼	▼	\mathbf{v}
DU					\mathbf{v}	▼			▼	▼	▼	▼	▼	▼	▼	▼			▼	▼	▼	▼	▼	▼	▼	▼	▼	▼
DU					▼	▼			▼	▼	▼	\mathbf{v}	▼	▼	▼	▼			▼	▼	▼	▼	▼	▼	▼	▼	▼	\mathbf{v}
											▼	▼															▼	▼
СН											▼	▼												•			▼	\mathbf{v}
											▼			▼	▼	▼												
DE											▼	\mathbf{v}			•	•												
					▼	•	▼	•			▼	•	▼	▼					▼	▼	▼	•	▼	▼	▼	▼	▼	
FM	▼	\mathbf{T}			▼	•		•			▼	•							•	▼	▼	•	•	•	•	•	\mathbf{T}	-
					▼	V			▼	V	▼	•	▼	V	V	V			▼	•	▼	V	▼	V	V	V	▼	-
IN									T	•			V		V	•	▼	•										
																								V				
TV																							-	•				
					•	•			•	•	•	-	T		V	•			•	•	•	•	T	T	-	-	•	
WF						Π			Ť	÷	Ť	÷	Ť	-	Ť	÷						Ť	Ť	-	Ť	Ť	Ť	-
	1																											

• Four nonparametric tests were completed to determine the presence of monotonic trends. Generally, all tests resulted in the same result for each parameter in the mainstem.

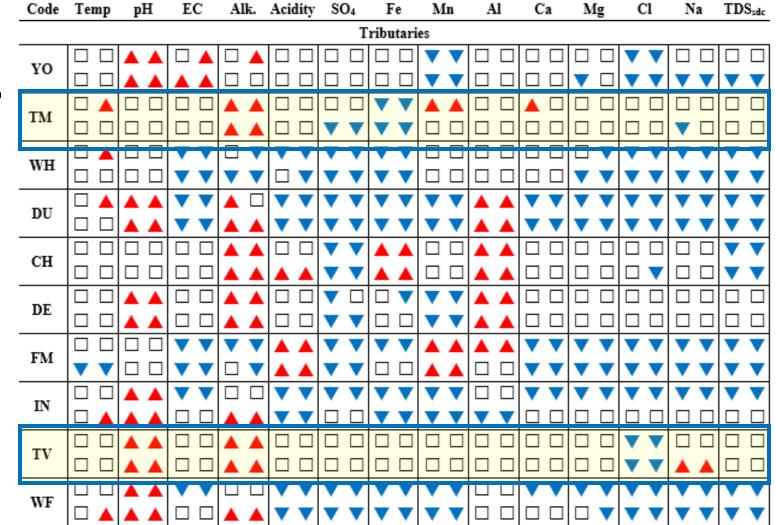




 Few significant trends were observed for temperature, acidity, Fe, Mn, Al, and Ca


Results: Trends in the major tributaries

 Decreasing trends were observed for EC, Acidity, SO₄, Fe, Mn, Ca, Mg, Cl, Na, and TDS in several locations.


Results: Trends in the major tributaries

- Decreasing trends were observed for EC, Acidity, SO₄, Fe, Mn, Ca, Mg, Cl, Na, and TDS in several locations.
- Increasing trends were observed for pH, alkalinity, and Al for several locations.

Results: Trends in the major tributaries

- Decreasing trends were observed for EC, Acidity, SO₄, Fe, Mn, Ca, Mg, Cl, Na, and TDS in several locations.
- Increasing trends were observed for pH, alkalinity, and Al for several locations.
- The fewest significant trends were observed at TM and TV.

Long-term trends in the Monongahela River basin

- We identified decreasing trends in sulfate and TDS among 83% of the mainstem locations regardless of statistical test, supporting the change in "impaired" status.
- Most of the trends that we observed in the main stem were the same for TDS, chloride, and sulfate regardless of adjusting for discharge or seasonal effects.
- Our trends in TDS support previous work.
- This study only evaluated gradual trends over time using a trend analysis approach.

Conclusions

- Overall, trends in AMD signals in the mainstem either showed no trend or were improving.
- Of the six mainstem sampling locations, widespread decreasing trends in total dissolved solids, sulfate, Cl, and Na were observed, regardless of adjusting for discharge or season; similarly, increasing trends or no trends in pH were observed at all sampling sites.
- Water quality gains are likely related to the voluntary management plan that was implemented by the coal industry.
- This independent monitoring through 3RQ is important to communicate the impacts as well as plan for future water management.

Acknowledgements

Colcom Foundation

Questions?