A Ston Ball Ball Ball Ball

A 3RQ GAPS Project with the Upper Chartiers Creek Watershed Association

Sarah Nelson Civil Engineering Major and WVWRI Student Worker

> 1/16/2025 WVWRI Seminar Series

Background

Goal:

- Address severely eroding bank along Chartiers Creek adjacent to public baseball field
- Use evidence gathered through the 3 Rivers QUEST GAPS program assisted study to apply for funding

Area of interest: A 1,035 ft reach of Chartiers Creek in Houston, PA (Washington County)

Summary:

- The West Virginia Water Research Institute (WVWRI) conducted a small-scale erosion study with the assistance of Upper Chartiers Creek Watershed Association (UCCWA) volunteers
- WVWRI installed erosion pins, conducted initial measurements, trained volunteers to collect monthly measurements, and compiled results

Pin Installation and Methodology

Pins were installed within 3 subsections representing the bank conditions within the study area.

Pin Installation and Methodology

- One-foot length stainless steel tubing (3/16" diameter) were utilized for the pins and were installed perpendicular to the bank surface
- Initial exposed distances were 3-6 centimeters
 - Exposed distances were greater where there was dense vegetation so that the pins could be found
- Pins were situated above baseflow surface water elevation to allow for pin measurement during normal streamflow conditions
 - Vertical distance between the pins varied (1-3 feet) due to bank height

- Within each subsection, pins were installed in 2 rows of 3 pins each with horizontal spacing of 2–4 feet
- 6 pins were installed within each subsection, for a total of 18 pins
- Pins were installed on April 20, 2023 and their exposure was recorded monthly by UCCWA volunteers

Measurement Protocol

- UCCWA volunteers began collecting measurements one month post installation with great care to minimize soil disturbances
 - Pin measurements were recorded with a Fisher Scientific 15 centimeter digital caliper
 - Weather conditions and notes regarding any mass failures/disturbances to the pins were also recorded
- After measurements were taken, the pins were reset to their original length indicated in the field data sheet
 - If pins experienced a change of less than 10 millimeters, they were not reset to minimize disturbance and error
- Photos and notes were taken in the event of a mass failure or other cases of pin displacement
 - Pins were reset in a location as close to its original position as possible

Results

- Measurements were collected monthly from May-October 2023 and repeated again in April of 2024 which offers results one year after pin installation
 - The final measurement was recorded after a winter of high flows, followed by significant flooding in early spring
 - 5 pins were washed out since the October 2023 measurement which were not used in calculating the overall study average since their final measurements were unknown
- In the figure to the right, a positive change (brown) indicates erosion, and a negative change (green) indicates deposition
- The most widespread erosion occurred in the spring (April-May 2023) and over the winter (October 2023-April 2024)

Average net erosion (first 6 months): 7.35 mm Average net erosion (entire year): 33.96 mm

One pin showed as much as 101.29 mm (4 inches) of erosion!

Results

Conclusions

- Erosion was measured (visually and numerically) at all three subsections
- 5 of 6 pins located in subsection C were washed out in winter/early spring, indicating that it should be prioritized for streambank stabilization

Before study (April 2023)

After study (May 2024)

Conclusions

- Significant flooding occurred at the site in early April
- Imaging from the PA Flood Risk Map shows that Houston Ball Field is a regulatory floodway
 - Regulatory floodway the channel of a river or other watercourse and the adjacent land area that is reserved from encroachment in order to discharge the base flood without cumulatively increasing the water-surface elevation by more than a designated height
- These floodways ensure that there are no increases in upstream flood elevations
- It is <u>crucial</u> that proactive steps be taken to stabilize the stream bank since research points to an increase in severity and frequency of flooding due to climate change

References

Easterling, D.R., Arnold, J.R., Knutson, T., Kunkel, K.E., LeGrande, A.N., Leung, L.R, Vose, R.S., Waliser, D.E., Wehner, M.F. 2017. Ch. 7: Precipitation Change in the United States. Climate Science Special Report: Fourth National Climate Assessment, Volume I. U.S. Global Change Research Program, https://doi.org/10.7930/J0H993CC.

"PA Flood Risk." Pennsylvania Emergency Management Agency, https://pafloodrisk.psu.edu/home/index.html. Accessed 5 June 2024.

Rando, Carolina, Leslie Hopkinson, Melissa O'Neal, and Jason Fillhart. 2017. "A Method for Assessing Shoreline Stability of Alpine Lake, West Virginia." Journal of Contemporary Water Research & Education 160 (1): 85–99. https://doi.org/10.1111/j.1936-704X.2017.03242.x.

Staley, Nathan Andrew, Theresa Wynn, Brian Benham, and Gene Yagow. 2006. "Modeling Channel Erosion at the Watershed Scale: Model Review and Case Study."

Questions?

Sarah Nelson sen00006@mail.wvu.edu

Read the Story Map!

