Skip to main content

Background Image for Header:

News

New Study Uses 3RQ Data to Analyze how Management Changes have Impacted Water Quality in Mon River Basin

A new study by WVU and West Virginia Water Research Institute (WVWRI) researchers utilizes 3RQ data to analyze how management changes have impacted water quality in the Monongahela River Basin. The study focuses on twelve sites on the Monongahela River and its major tributaries that, as part of the 3RQ program, have at least monthly water quality data dating back to 2009. Researchers examine water quality trends from 2009-2019 under the lens of three key management changes that occurred within this time period. These management changes include a voluntary discharge management plan developed by the WVWRI and implemented by the coal industry (2010), Pennsylvania’s prohibition of produced wastewater in publicly owned treatment facilities (2011), and construction of a reverse osmosis treatment facility (2013). Since the implementation of these changes, primarily the voluntary discharge management plan which encompasses most of the watershed, TDS in the Monongahela has not exceeded the EPA′s secondary drinking water standards. The results from this study have demonstrated how bromide, chloride, sulfate, and TDS trend changes coincided with discharge and critical water quality management alterations to the Monongahela River Basin. While individual management decisions may be effective, combining multiple watershed-scale decisions targeting contributing constituents of TDS can lead to greater overall effectiveness. Published to Water in February of 2023, the article, entitled "Effective Management Changes to Reduce Halogens, Sulfate, and TDS in the Monongahela River Basin, 2009–2019," is free and open to the public. 

Read Full Article: New Study Uses 3RQ Data to Analyze how Management Changes have Impacted Water Quality in Mon River Basin

West Virginia University From Pollutant to Product

Meet Paul Ziemkiewicz, PhD. Paul grew up in western Pennsylvania. As a child, he dreamed of cleaning up his local rivers and streams, which were devoid of life due to acid mine drainage. Today, as the Director of Water Research at West Virginia University (WVU), Paul is living out that dream.

Abandoned coal mines cause various types of water pollution. Acid mine drainage is the most prevalent. Abandoned coal mines leave pits of highly acidic water that contain large amounts of heavy minerals. Over time, infiltrated groundwater and surface water from precipitation fill these pits to the brim. When the water spills over, harmful chemicals are carried into the surrounding water and soil. These chemicals can hurt humans, plants, and animals.

Read Full Article: West Virginia University From Pollutant to Product

West Virginia rising: WVU partners with Coalfield Development Corporation, other coalition members to win $63M EDA grant

Thousands of acres of abandoned mining land in West Virginia will get new uses out of part of a large-scale development project Coalfield Development Corporation is leading with support from West Virginia University. The project is among those to receive funding from the U.S. Economic Development Administration as part of the “Build Back Better Regional Challenge Grant.” 

The objective of the comprehensive project, called Appalachian Climate Technology Now, is to create a more sustainable future in areas previously reliant on coal. 

Read Full Article: West Virginia rising: WVU partners with Coalfield Development Corporation, other coalition members to win $63M EDA grant

Could Coal Waste Be Used to Make Sustainable Batteries?

On a recent afternoon, near the headwaters of Deckers Creek, in West Virginia, Paul Ziemkiewicz, the biological scientist who directs the Water Research Institute at West Virginia University, squatted by a blood-red trickle seeping from a hillside. The color, he pointed out, was the telltale sign of water contaminated by a form of coal waste called acid mine drainage, which poisons aquatic life. For decades, this contaminated water has devastated Appalachia, killing many of the creeks and rivers that lie between Kentucky and southwestern Pennsylvania. “I’ve spent thirty-two years making this waste go away,” Ziemkiewicz told me. He had come to meet Brian Hurley, the executive director of Friends of Deckers Creek, a local watershed group that had been working to clean up the waste. Hurley had shaggy hair, and wore rubber boots and sunglasses propped on the brim of his baseball cap. In another era, he might’ve found work in a local coal mine, or a steel mill, but those industries were mostly gone. There are, however, increasing opportunities in cleaning up the mess left behind. Part of Hurley’s job is to monitor the water-treatment systems for the creek, some of which Ziemkiewicz had helped to design. “You can make a living now fixing things and making them better,” Hurley said.

Ziemkiewicz, who is lean and studious-looking, explained that acid mine drainage forms when air and water come into contact with the exposed and pyrite-rich rock on the surfaces of mines, starting a chemical reaction that releases sulfuric acid, which then flows into creeks. Ziemkiewicz directed Hurley to open the metal door of the treatment system, which looked like a miniature grain silo built over the seep. Inside, a waterwheel dropped chalky white lime dust into the vermillion stream below. “It’s a glorified eggbeater,” Hurley said. The lime, a base, neutralizes the acid in the contaminated water. The water then flows from the silo into a large holding pond, where heavier metals and other elements drop out, forming a rainbow sludge. The puddles of sludge take on vivid hues: glacial blue indicates the presence of aluminum; terra-cotta red means iron. The treated water then flows from the pond, down the bank, into the creek.

Read Full Article: Could Coal Waste Be Used to Make Sustainable Batteries?

In coal country, a new chance to clean up a toxic legacy

Article written by Austyn Gaffney and Dane Rhys for The Washington Post
May 19, 2022

On the site of a shuttered and bankrupt coal mine near the headwaters of the Potomac River, the state of West Virginia is building a demonstration plant that researchers say could help spur efforts to clean up thousands of miles of waterways contaminated by coal-mining waste.

Read Full Article: In coal country, a new chance to clean up a toxic legacy

Manchin: United States needs a push to develop critical minerals for technology

U.S. Senate Energy Chairman Joe Manchin kicked off a committee hearing today by saying the United States needs a push to produce the kind of critical minerals that are key elements of modern technology like lithium batteries.

Rare earth elements are a key component of electronics, aerospace, automotive and other products, particularly rechargeable batteries. China is the dominant producer, and the rest of the world is trying to catch up.

Read Full Article: Manchin: United States needs a push to develop critical minerals for technology